If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7b^2-20=23b
We move all terms to the left:
7b^2-20-(23b)=0
a = 7; b = -23; c = -20;
Δ = b2-4ac
Δ = -232-4·7·(-20)
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-33}{2*7}=\frac{-10}{14} =-5/7 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+33}{2*7}=\frac{56}{14} =4 $
| 90-57=x | | 90-70=x | | 90-60=x | | Y=4.1+0.12x | | 90-16=x | | 6x^2+9x=(2x+3) | | 36=t=49 | | 184-11x=x | | 26-12x=50 | | -4n+8=-5(1+5n)-8 | | 0=1350-1.2x | | 70x=64x | | -4(4x+2)=-38-x | | 180-151=x | | 12-3c=20 | | 5(2x-2)=2)4x-1) | | 10x-84=4 | | 180-49=x | | k+2.9=93 | | 180-28=x | | 3(x+2)=2(8+2x) | | 180-46=x | | -6+2v=-2 | | 180-39=x | | 3+4=9x+3 | | p/2=48 | | 1.5*5.5*x=152.38 | | 5x=3.994 | | -2.5+v/6=-21.7 | | (5x+8)=(10x-8) | | 1/4x-3=3/8x+8 | | F=49x |